North Shore Tamil Dubbed Movie Torrent
STS-45 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, is of the northern reaches of the Persian Gulf with the sunglint pattern centered on the Saudi Arabian island of Abu Ali. Bright features along the coast are thought to be deposits of oil, released from a terminal offshore of Kuwait during the recent Persian Gulf War. Further up the coast, in Kuwait, the black, oil-soaked desert surrounding the site of the oil well fires is clearly visible. View was taken from an altitude of 160 nautical miles with OV-104 located at 28 degrees north and 52.8 degrees east. During the STS-45 mission, an international survey team focused on oil contamination of the shallow-water habitants in the area north of Abu Ali Island. Crewmembers contacted the NOAA survey vessel, the R/V Mt. Mitchell, several times and photographed water color and sunglint within the study area and throughout the entire Persian Gulf. These photographic data are expected to aid the Persian Gulf researchers in
North Shore tamil dubbed movie torrent
Al-Samaliah Island is one of the inshore islands of U.A.E. located at about 12 km north-east of Abu Dhabi in the Arabian Gulf. It has a flat undulating surface with neither sand dunes nor rocky hills. Its sandy soil is generally salt-affected with variable percentages of salts. The vegetation of Al-Samaliah Island is essentially halophytic and may be categorized as: seagrasses, mangal and littoral saltmarsh types. The main species include: Cymodocea ciliata, Halophila spp. and Halodula univervis (seagrasses), some algae, Avicennia marina (mangrove), Arthrocnemum macrostachyum, Seidlitzia rosmarinus, and Suaeda vermiculata (salt marsh). Other halophytes commonly present are: Anabasis setifera, Halocnemum strobilaeum, Halopeplis perfoliata, Salsola imbricata and Zygophyllum gatarense in addition to two annuals: Schangenia aegyptiaca and Zygophyllum simplex. Phoenix dactylifera is cultivated in local areas covered with sandy sheets. Between the date palm trees there is a thin growth of Cyperus conglomeratus. Some plant species have been analysed chemically to determine their main constituents. The relationships between the environmental factors and the plant life of the islands are discussed.
Prevailing oceanographic climate, sediment supply, the magnitude and frequency of storm events, and anthropogenic modifications interact to drive the geomorphic evolution of barrier systems at varying spatial and temporal scales. The Chandeleur Islands east of the Louisiana mainland receive little external sediment input, and alongshore currents generally transport sediment away from the nearshore and littoral system to flanking depositional centers. We analyzed Landsat satellite imagery and lidar datasets from the northern Chandeleur Islands to quantify morphological changes that resulted from storm impacts and human-induced sediment input at intra-annual to decadal time scales. Since 2001, the study area was impacted by multiple tropical systems, including Hurricanes Lili (2002), Katrina (2005), and Isaac (2012). Additionally, between June 2010 and April 2011, in response to the Deepwater Horizon oil spill, the State of Louisiana constructed a 2-m high sand berm extending more than 12 km along the northern Chandeleur Islands platform. Berm emplacement provided a unique opportunity to study how anthropogenic sediment input affects the morphologic response of a naturally evolving barrier system. Land-cover and elevation metrics were utilized to test the hypotheses that (1) island geomorphology, in particular marsh extent, significantly influenced both "instantaneous" and longer term morphologic change and recovery following storm events and (2) redistribution of berm sediment depended on both antecedent morphologic controls as well as spatial variability in berm placement relative to the island platform. Despite the rapid post-construction degradation of the berm, imagery and elevation data suggest that some berm sediment remained in the system. Where the barrier-island was backed by healthy marsh platform, shoreward translation of the berm crest and increased elevations landward of the berm provide evidence of berm sand redistribution onto the emergent island. At
This paper presents the results of three dimensional sequence stratigraphic forward modelling of the Aptian age Shu'aiba Formation from Abu Dhabi, United Arab Emirates (UAE). The Shu'aiba Formation lies within the uppermost part of the Lower Cretaceous Thamama Group and forms one of the most prolific hydrocarbon reservoir intervals of the Middle East with production dating back to the 1960's. The Shu'aiba Formation developed as a series of laterally-extensive shallow-water carbonate platforms in an epeiric sea that extended over the northern margin of the African-Arabian Plate. This shallow sea was bounded by the Arabian Shield to the west and the passive margin with the Neo-Tethys Ocean towards the north and east (Droste, 2010). The exposed Arabian Shield acted as a source of siliciclastic sediments to westernmost regions, however, more offshore areas were dominated by shallow-water carbonate deposition. Carbonate production was variously dominated by Lithocodium-Baccinella, orbitolinid foraminifera and rudist bivalves depending on local conditions. While there have been numerous studies of this important stratigraphic interval (for examples see van Buchem et al., 2010), there has been little attempt to simulate the sequence stratigraphic development of the formation. During the present study modelling was undertaken utilising the CARBONATE-3D stratigraphic forward modelling software (Warrlich et al., 2008; Warrlich et al., 2002)) thus allowing for the control of a diverse range of internal and external parameters on carbonate sequence development. This study focuses on platform development in the onshore Bu Hasa Field - the first giant oilfield to produce from the Shu'aiba Formation in Abu Dhabi. The carbonates of the Bu Hasa field were deposited on the southwest slope of the intra-shelf Bab Basin, siliciclastic content is minor. Initially these carbonates were algal dominated with rudist mounds becoming increasingly important over time (Alsharhan, 1987
Bangladesh is recognized for its high vulnerability to sea level rise (SLR). SLR directly and indirectly (by altering morphology of river estuary) accelerates erosion processes, washes out the loose materials of the coast and coastal islands. Hatiya, highly populated coastal island, located in Meghna river estuary is under severe threat of coastal erosion, which has not been quantified yet. The accurate mapping of the shoreline and coastal changes are very important for adopting conservation measures e.g. protection of human life, property and the natural environment. The objectives of the present study are to use remote sensing and Geographical Information System techniques to evaluate spatial and temporal changes in the shoreline and coastal land area of the Hatiya Island between the year of 1985 and 2016 from multi-temporal satellite images, i.e. assessing shifting of the shoreline position through digital shoreline analysis besides the erosion-accretion measurements. Study reveals that about 67 square kilometer areas has been lost between 1985 and 2016 which was about 17 percent of original area (1985). Erosion mainly took place in northern, north-western banks of the island. In these areas, the landward movement and rate of the shoreline were higher with a highest value of the net shoreline movement (NSM) around 6.2 km. Erosion rate is significant in exposed part of the island where tidal water pressure, shoreline configuration, loose bank materials and steep slope were observed. However, the accretion was noticed in recent years (2010-2016) in southern part of the island where slopes were gentle, perhaps due to backwash sediment deposition. As erosion process is prominent in this island, significant amounnt of usable land was lost. Therefore, local livelihood pattern has changed that has noticable effect on local economy. By quantifying the erosion-accretion rate, livelihood planning can be initiated in climatically threated vulnerable islands.
Louisiana barrier islands, such as the chain surrounding the southeast region of the state, are experiencing rapid loss of land area, shoreline erosion, and landward migration due to transgression and in-place drowning, and the landfall of several major hurricanes in the last decade. Observations of migration rates and overall impacts to these barrier islands are poorly understood since they do not respond in a traditional way, such as barrier rollover. This paper aims to verify how wave energy and potential longshore sediment transport trends have influenced the recent evolution of the Chandeleur Islands, by direct comparison with recent observations of migration and erosion trends. The Chandeleur Islands are characterized by a bidirectional transport system, with material moving from the central arc to the flanks. The longshore sediment transport along the barrier islands was calculated after propagation and transformation of waves to breaking (generated using observed winds), and through the use of a common longshore sediment transport formula. Seasonal variations in wind climate produced changes in the transport trends and gradients that agree with migration and rotation patterns observed for this barrier island system. Results suggest that wind dominance produces seasonal oscillations that cause an imbalance in the resulting transport gradients that over time are responsible for higher rates of transport in the northward direction. These results and data from other works verify the evolutionary model previously suggested, and qualitatively confirm the recent observations in asymmetric shoreline erosion.
The Chandeleur Islands represent the largest and oldest transgressive barrier island arc in the northern Gulf of Mexico. Generated by the transgressive submergence of the St. Bernard delta complex, the Chandeleur Islands form the protective geologic framework for one of the richest areas of salt marsh and seagrass flats in Louisiana. The Chandeleur barrier island arc is 60 km long and consists of five individual islands backed by a linear, multiple bar system enclosing a shallow basin floored by extensive seagrass flats. The northern part of the Chandeleur chain is the highest in relief, elevation, width, and habitat diversity. Nonstormmore morphology is predominantly a combination of continuous dunes and dune terraces. Numerous washover channels and large washover fans extend into the backbarrier environment. Further south, the island width decreases and washover flats and terraces dominate the shoreline morphology In the southernmost section, the island arc is fragmented into a series of small islands and shoals separated by tidal inlets. Between 1984 and 1989, aerial videotape, aerial photographic, and bathymetric surveys were used to map and monitor the geomorphic changes occurring along the shoreline and in backbarrier areas. The aerial videotape mapping surveys focused on the impacts of hurricanes Danny, Elena, and Juan on the geomorphology of the islands. Videotape imagery was acquired in July 1984 and in July (prestorm), August (post-Danny), September (post-Elena), and November (post-Juan) 1985. A coastal geomorphic classification was developed to map the spatial and temporal landscape changes between surveys. less